Isospectral Riemann surfaces

نویسندگان

  • PETER BUSER
  • Peter BUSER
چکیده

© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isospectral Graphs and Isospectral Surfaces

In memory of Hubert Pesce In this paper, we investigate the following question: to what extent is there a converse to the Theorem of Sunada Su] in the context of graphs? Our experience in dealing with the question, \Can one hear the shape of a drum?" is that the many facets of this question turn out to be surprisingly delicate. The present instance is no exception. We will rst present a partial...

متن کامل

Bäcklund–Darboux Transformation for Non-Isospectral Canonical System and Riemann–Hilbert Problem

A GBDT version of the Bäcklund–Darboux transformation is constructed for a non-isospectral canonical system, which plays essential role in the theory of random matrix models. The corresponding Riemann–Hilbert problem is treated and some explicit formulas are obtained. A related inverse problem is formulated and solved.

متن کامل

Isospectral Integrability Analysis of Dynamical Systems on Discrete Manifolds

It is shown how functional-analytic gradient-holonomic structures can be used for an isospectral integrability analysis of nonlinear dynamical systems on discrete manifolds. The approach developed is applied to obtain detailed proofs of the integrability of the discrete nonlinear Schrödinger, Ragnisco–Tu and Riemann–Burgers dynamical systems.

متن کامل

Compact lsospectral Sets of Surfaces

In this paper we study sets of surfaces which are isospectral with respect to the Laplace-Beltrami operator. More specifically, for closed surfaces (compact, no boundary) we consider a fixed surface and the family of metrics on that surface having a given Laplace spectrum, whereas for surfaces with boundary we confine our study to the class of simply connected planar domains all having the same...

متن کامل

On Infinitesimal Deformations of Cmc Surfaces of Finite Type in the 3-sphere

We describe infinitesimal deformations of constant mean curvature surfaces of finite type in the 3-sphere. We use Baker-Akhiezer functions to describe such deformations, as well as polynomial Killing fields and the corresponding spectral curve to distinguish between isospectral and non-isospectral deformations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017